Перевод: с русского на все языки

со всех языков на русский

работы по наряду

  • 1 объём работы по наряду

    Универсальный русско-немецкий словарь > объём работы по наряду

  • 2 регламентные работы

    Русско-английский научный словарь > регламентные работы

  • 3 прибор, регистрирующий время работы

    Dictionnaire russe-français universel > прибор, регистрирующий время работы

  • 4 регистрировать прибором время работы

    Dictionnaire russe-français universel > регистрировать прибором время работы

  • 5 объём

    объём м. Ausmaß n; Fassungsraum m; Inhalt m; Kapazität f; Kubatur f; Kubikinhalt m; Raum m; Rauminhalt m; Umfang m; Volumen n
    объём м. базы Basisgebiet n; Basisraum m
    объём м. водохранилища Speicherkapazität f; Stauinhalt m; Stauvolumen n; гидрот. Wehrstauraum m
    объём м. воды Wasserinhalt m; Wasservolumen n
    объём м. воздуха Luftraum m; Luftvolumen n
    объём м. ЗУ с. выч. Speicherumfang m
    объём м. информации Datenmenge f; Datenumfang m; Informationsgehalt m; Informationsinhalt m; выч. Informationsmenge f; Informationsumfang m; Informationsvolumen n; Nachrichteninhalt m
    объём м. партии Losumfang m; Postenumfang m; Umfang m der Charge
    объём м. партии продукции Losumfang m; Postenumfang m; Umfang m der Charge
    объём м. пор Hohlraumvolumen n; Porenanteil m; Porenvolumen n
    объём м. породы, отбиваемый за одно взрывание с. горн. Ausbruch m
    объём м. производства Leistungsvolumen n; Produktionsumfang m; Produktionsvolumen n; Umsatz m
    объём м. работ, выполненный собственными силами Eigenleistung f
    объём м. сжатия Kompressionsraum m; Verdichtungsraum m
    объём м. ствола лес. Stamminhalt m; Stammmasse f
    объём м. стока гидр. Abflußmenge f; Abflußwasserfracht f
    объём м. топки Feuerrauminhalt m; Feuerraumvolumen n
    объём м. утряски Klopfdichte f; Klopfvolumen n
    объём м. цилиндра Zylinderraum m; Zylindervolumen n

    Большой русско-немецкий полетехнический словарь > объём

  • 6 ПРЕДИСЛОВИЕ

    Наряду с использованием англо-русских отраслевых словарей специалистами и учащимися в области стоматологии – будь это теоретическое или практическое направление – представляют актуальный интерес для широкого круга стоматологов и переводчиков и русско-английские лексикографические работы. Отсутствие на полках должной справочной литературы данного направления и очевидная потребность в ней побудили авторов предпринять попытку создать русско-английский стоматологический словарь, охватывающий основную специальную лексику по базовым разделам теоретической и клинической стоматологии.
    Назначение настоящего словаря – служить пособием при переводе с русского языка на английский стоматологических текстов. При его составлении были использованы отечественные и зарубежные англоязычные издания по всем разделам стоматологии, а также энциклопедии, справочники, материалы по стоматологической технике, русско-английские и англо-русские словари, пользовались консультациями опытных специалистов стоматологического факультета Рязанского государственного медицинского университета имени акад. И.П. Павлова.
    Все термины расположены в строго алфавитном порядке русского языка, и словарные статьи построены по алфавитно-гнездовой системе. В каждой словарной статье представлены однокорневые термины и терминологические словосочетания, составные термины, соотнесенные к первому, заглавному слову гнезда.
    Информативность русского термина определяется стремлением обеспечить возможно большей нормативностью употребления английских терминов, количество синонимов которых значительно превосходит число русских эквивалентов.
    Словарь является двуязычным переводным, предназначенным для стоматологов, переводчиков, а также преподавателей, аспирантов, ординаторов, студентов стоматологических факультетов медицинских вузов.
    Авторы выражают глубокую благодарность за консультации в процессе работы над словарем доктору мед. наук профессору Н.В. Курякиной, доктору мед. наук профессору Э.С. Тихонову, кандидату мед. наук доценту Л.П. Набатчиковой.
    Авторы

    Russian-english stomatological dctionary > ПРЕДИСЛОВИЕ

  • 7 работа

    ж
    ( труд) travail; ( задание) tâche; ( рабочее место) emploi; (задачи, обязанности) fonctions

    выполнять работу — effectuer une tâche, effectuer un travail

    давать работу — créer les emplois, ( поручать) confier une tâche

    нанимать на работу — embaucher, recruter, employer

    предоставлять работу — employer, engager à...

    - работа в ночную смену
    - работа в одну смену
    - работа в составе группы
    - работа на вредном производстве
    - работа на давальческом сырье
    - работа на дому
    - работа на конвейере
    - работа на производстве
    - работа над контрактом
    - работа над планом
    - работа над прогнозом
    - работа неполный рабочий день
    - работа по выходным дням
    - работа по договору
    - работа по изготовлению
    - работа по исследованию рынка
    - работа по контракту
    - работа по найму
    - работа по наряду
    - работа по непрерывному графику
    - работа по скользящему графику
    - работа по сменам
    - работа по фиксированному графику
    - работа по чередующемуся графику
    - работа с повторяющимся циклом
    - погрузочно-разгрузочные работы
    - работа сменных бригад
    - строительно-монтажные работы
    - фактически произведенная работа
    - хорошо оплачиваемая работа
    - административная работа
    - аккордная работа
    - бесплатная работа
    - бригадная работа
    - временная работа
    - вспомогательная работа
    - выполненная работа
    - выполняемая работа
    - двухсменная работа
    - изыскательские работы
    - исполнительская работа
    - исследовательская работа
    - конторская работа
    - монотонная работа
    - надомная работа
    - невыполненная работа
    - незавершенная работа
    - неоплачиваемая работа
    - непостоянная работа
    - непрестижная работа
    - низкооплачиваемая работа
    - общественные работы
    - обычная работа
    - оперативная работа
    - оплачиваемая работа
    - организационная работа
    - отделочные работы
    - повременная работа
    - подготовительные работы
    - подрядная работа
    - постоянная работа
    - предстоящие работы
    - престижная работа
    - произведённая работа
    - ремонтные работы
    - руководящая работа
    - рутинная работа
    - сверхурочная работа
    - сдельная работа
    - сезонная работа
    - сезонные работы
    - случайная работа
    - сменная работа
    - срочная работа
    - стивидорные работы
    - производить стивидорные работы
    - текущая работа
    - трудоёмкая работа
    - тяжёлая физическая работа

    Русско-французский финансово-экономическому словарь > работа

  • 8 В третьей области

    1. S

    В третьей области показатель степени равен 8 - 10, а влажность отпускаемого пара более 0,2 %. В этой области процесс носит кризисный характер и действительный уровень воды в барабане приближается к пароотборным трубам.

    Точка перехода из 2-й области в 3-ю называется критической и работа сепарационных устройств в этой области недопустима. Работа котла в 3-й области сильно зависит от нагрузки, при этом влажность отпускаемого пара составляет 0,2 - 1,0 % и более. Ленточные солемеры показывают резкое увеличение солесодержания пара (броски).

    С паровой нагрузкой котла D связаны следующие характеристики сепарационных устройств:

    массовая нагрузка зеркала испарения

    x014.gif

    осевая подъемная скорость пара

    x016.gif

    удельная паровая безразмерная нагрузка k [9[

    x018.gif

    где Fз.и. - площадь зеркала испарения (или площадь пароприемного потолка).

    Следующий параметр, который существенно влияет на величину влажности пара, а значит и на величину критических нагрузок, это высота активного сепарационного объема. Связь между влажностью пара, паропроизводительностью и высотой парового объема hп можно представить следующей формулой [5]

    x020.gif (4)

    где М- размерный коэффициент, определяемый физическими свойствами воды и пара.

    Как видно из этой формулы, существует обратно пропорциональная зависимость между влажностью пара и высотой парового объема. Экспериментально было показано, что при увеличении высоты парового объема более 1000 мм, влажность пара уже практически мало зависит от дальнейшего ее увеличения [4] - [7].

    На работу сепарационных устройств котлов существенное влияние оказывает солесодержание котловой воды (SKB). Проявляется это следующим образом. При работе котла при постоянной паропроизводительности при увеличении солесодержания котловой воды происходит очень плавное увеличение солесодержания пара, при достижении определенного значения солесодержания котловой воды происходит резкое увеличение влажности пара котла (солесодержания), регистрирующие солемеры отмечают резкое увеличение солесодержания пара (бросок). Объяснить это можно следующим образом: по мере увеличения концентрации веществ в котловой воде и прежде всего коллоидных частиц оксидов железа, шлама и др. веществ, поверхностный слой приобретает структурную вязкость. Длительность существования паровых пузырей до их разрушения увеличивается (набухание), пленки паровых пузырей успевают утониться и при разрыве их образуется большое количество мелких капель (трудно сепарируемых), вода приобретает способность к вспениванию. Значение солесодержания котловой воды, при котором происходит резкое увеличение влажности пара, называется критическим (x022.gif). Величина критического солесодержания зависит от давления пара в котле, конструкции сепарационных устройств, солевого состава воды («букета»), паровой нагрузки сепарационных устройств и т.д. Наиболее точно критическое солесодержание котловой воды можно определить только на основании теплохимических испытаний конкретного котла. Ориентировочно для котлов низкого давления величина критического солесодержания составляет около 3000 мг/кг, для котлов среднего давления - 1300 - 1500 мг/кг, а для котлов высокого давления - 300 - 500 мг/кг.

    Одним из вариантов приспособления работы котлов на воде закритического солесодержания при умеренных значениях непрерывной продувки является применение ступенчатого испарения котловой воды. Его сущность состоит в том, что водяной объем барабана и парообразующие циркуляционные контуры разбиваются на два или три независимых отсека с подачей всей питательной воды только в 1-й отсек и отводом воды в продувку из последнего отсека. При такой схеме питания резко возрастает «внутренняя» продувка первого (чистого) отсека, которая будет равна (nп + Р) % (при выполнении котла, например по двухступенчатой схеме испарения), а увеличение продувки будет составлять в x024.gif раза, по сравнению с котлом без ступенчатого испарения. В связи с этим концентрация солей в котловой воде 1-й ступени резко уменьшается и соответственно улучшается качество пара. Для 2-й ступени испарения концентрация солей продувочной воды будет практически такой же, как и у котла без ступенчатого испарения (при одинаковых значениях непрерывных продувок Р = const для обеих схем). Если принять, что коэффициенты выноса (или влажность пара) до и после перевода котла на ступенчатое испарение были одинаковыми, то качество пара (солесодержание) котла при переводе на ступенчатое испарение будет выше, чем у котла с одноступенчатой схемой испарения. Если же качество пара (солесодержание) котла со ступенчатым испарением принять одинаковым, как и у котла без ступеней испарения, то тогда котел со ступенчатым испарением будет работать с меньшей величиной непрерывной продувки (чем котел без ступеней испарения). В отечественном котлостроении в качестве сепараторов пара последних ступеней испарения применяют, как правило, выносные циклоны. Выносные циклоны - это устройства, которые лучше всего приспособлены для работы на воде повышенного солесодержания. (За счет развития соответствующей паровой высоты и использования центробежных сил для подавления вспенивания).

    В котлах высокого давления наряду с капельным уносом имеет место значительный избирательный унос различных солей и прежде всего кремнекислоты (SiO2), за счет непосредственного физико-химического растворения солей в паре. Избирательный вынос кремнекислоты (при рН = 9,0 - 12,0) для котлов с давлением 115 кгс/см2 составляет 2,0 - 1,0 %, а для котлов с давлением 155 кгс/см2 - 4,0 - 2,5 % [9].

    Для снижения кремнесодержания в паре котлов высокого давления в сепарационной схеме предусматривается паропромывочное устройство. Наличие этого устройства приводит к некоторым особенностям работы всей сепарационной схемы котлов высокого давления, по сравнению с котлами среднего давления.

    В котлах высокого давления эффективность паропромывочного устройства характеризуется коэффициентом промывки

    x026.gif                                                          (5)

    где SiO2н.п. - кремнесодержание пара на выходе из барабана;

    SiO2н.п. - кремнесодержание питательной воды.

    Коэффициент уноса с паропромывочного устройства Кпромопределяется по формуле

    x028.gif                                                          (6)

    где SiO2пром - кремнесодержание воды на паропромывочном устройстве.

    Для котлов высокого давления по данным испытаний Кпром составляет 8 - 10 %.

    Кремнесодержание промывочной воды определяется по формуле

    x030.gif                                                (7)

    где SiO2сл - кремнесодержание воды на сливе с паропромывочного устройства.

    Степень очистки пара на паропромывочном устройстве определяется по формуле

    x032.gif                                                            (8)

    где SiO2н.п.(до) - кремнесодержание насыщенного пара до паропромывочного устройства.

    Кремнесодержание пара до паропромывочного устройства определяется из следующей формулы

    SiO2н.п.(до) = К · SiO2к.в,                                                    (9)

    где SiO2к.в. - кремнесодержание котловой воды;

    К - коэффициент уноса кремниевой кислоты из котловой воды в пар до промывки.

    Из приведенных формул следует, что кремнесодержание пара после промывки (пар котла SiO2н.п.) зависит как от кремнесодержания питательной воды, так и от кремнесодержания пара до промывки.

    В конечном итоге чем ниже будет кремнесодержание промывочной воды (SiO2пром), тем чище будет пар котла. Концентрация кремнекислоты в промывочном слое зависит, как от качества питательной воды, так и от количества кремнекислоты, поступающей из парового объема до промывки. При неналаженной работе сепарационных устройств до промывки, наряду с избирательным уносом [формула (9)] возможен вынос значительного количества капель котловой воды, где кремнесодержание в 5 - 8 раз выше, чем в питательной воде. Попадание капель котловой воды на промывку (капельный унос) приводит к увеличению кремнесодержания промывочной воды и, как следует из формулы (6), приводит к увеличению кремнесодержания пара котла.

    Качество пара котла зависит от следующих основных факторов:

    Источник: СО 34.26.729: Рекомендации по наладке внутрикотловых сепарационных устройств барабанных котлов

    Русско-английский словарь нормативно-технической терминологии > В третьей области

  • 9 направленная токовая защита нулевой последовательности

    1. directional neutral current relay

     

    направленная токовая защита нулевой последовательности

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    Нулевая последовательность фаз.
    Согласно теории симметричных составляющих любую несимметричную систему трех токов или напряжений - обозначим их А, В, С - можно представить в виде трех систем прямой, обратной и нулевой последовательностей фаз (рис. 7.9, а-в). Первые две системы симметричны и уравновешены, последняя симметрична, но не уравновешена.
    Система прямой последовательности (рис. 7.9, а) состоит из трех вращающихся векторов A 1, B 1, C 1, равных по значению и повернутых на 120° относительно друг друга, причем вектор B1 следует за вектором А 1.
    5300
    Рис. 7.8. Принципиальная схема максимальной токовой защиты с пуском от реле минимального напряжения:
    КА - реле тока (токовый пусковой орган); КV - реле минимального напряжения (пусковой орган по напряжению); КТ - реле времени
    Система обратной последовательности (рис. 7.9, б) состоит также из трех векторов A 2, B 2, C 2, равных по значению и повернутых на 120° относительно друг друга, но при вращении в ту же сторону, что и векторы прямой последовательности, вектор B 2 опережает вектор A 2 на 120°.
    Система нулевой последовательности (рис. 7.9, в) состоит из трех векторов A 0, B 0, C 0, совпадающих по фазе.
    Очевидно, что сложение одноименных векторов этих трех систем дает ту несимметричную систему, которая была разложена на, ее составляющие:

    В качестве примера сложение векторов фазы С выполнено на рис. 7.9, г.
    Существует и метод расчета симметричных составляющих, согласно которому составляющая нулевой последовательности

    5301
    Рис. 7.9. Симметричные составляющие:
    а, б, в - прямой, обратной и нулевой последовательности соответственно; г - сложение векторов трех последовательностей фазы С
    5302
    Рис. 7.10. Однофазное КЗ на землю на ненагруженной линии с односторонним питанием:
    а - схема линии; б - векторная диаграмма напряжения и тока для точки К ; в, г - векторные диаграммы напряжения и токов, построенные с помощью симметричных составляющих

    Таким образом, для нахождения A 0 надо геометрически сложить три составляющие вектора и взять одну треть от суммы.
    Целесообразность представления несимметричных систем тремя симметричными составляющими состоит в том, что анализ и расчеты напряжений и токов для системы нулевой последовательности могут выполняться независимо от систем прямой и обратной последовательностей, что во многих случаях упрощает расчеты.
    Включение же защит на составляющие нулевой последовательности дает ряд преимуществ по сравнению с включением их на полные токи и напряжения фаз для действия при КЗ на землю.
    Практическое использование составляющих нулевой последовательности. Рассмотрим металлическое замыкание фазы А на землю в сети с эффективно заземленной нейтралью (рис. 7.10, а). Этот вид повреждения относится к несимметричным КЗ и характеризуется тем, что в замкнутом контуре действует ЭДС E A, под действием которой в поврежденной фазе А проходит ток IA=Ik отстающий от E A на 90°; напряжение фазы А относительно земли в месте повреждения (точка К) UAк =0, так как эта точка непосредственно соединена с землей; токи в неповрежденных фазах IB и IC отсутствуют. С учетом сказанного на рис. 7.10, б построена векторная диаграмма для точки К.
    На рис. 7.10, в и г приведены векторные диаграммы напряжений и токов, построенные с помощью симметричных составляющих для того же случая однофазного КЗ.
    Сравнение диаграммы, представленной на рис. 7.10, б, с диаграммами рис. 7.10, в и г показывает, что вектор I к равен вектору 3I0, а ЕА =U B к + U C к = 3U0к. Значит, полный ток фазы в месте повреждения может быть представлен утроенным значением тока нулевой последовательности, а ЭДС - ЕА - утроенным значением напряжения нулевой последовательности.
    Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА равен геометрической сумме токов трех фаз:

    Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0.
    Для получения напряжения нулевой последовательности вторичные обмотки трансформатора напряжения соединяют в разомкнутый треугольник (рис. 7.12) и обязательно заземляют нейтраль его первичной обмотки. В этом случае

    5303
    Рис. 7.11. Соединение трансформаторов тока в фильтр токов нулевой последовательности
    В нормальном режиме работы и КЗ между фазами (без земли) геометрическая сумма напряжений вторичных обмоток, соединенных в разомкнутый треугольник, равна нулю, и поэтому Up также равно нулю (рис. 7.12, б). И только при однофазных (или двухфазных) КЗ на землю на зажимах разомкнутого треугольника появляется напряжение Up=3U0 (рис. 7.12, в).
    Фазные напряжения систем прямой и обратной последовательностей образуют симметричные звезды, и поэтому суммы их векторов в схеме разомкнутого треугольника всегда равны нулю.

    5304
    Рис. 7.12. Соединение однофазных трансформаторов напряжении в фильтр напряжения нулевой последовательности:
    а - общая схема трансформатора напряжения; б - векторные диаграммы в нормальном режиме работы; с - то же при замыкании фазы А на землю в сети с заземленной нейтралью; PV - вольтметр контроля исправности цепей вторичной обмотки

    В сетях с эффективным заземлением нейтрали около 80% повреждений связано с замыканиями на землю. Для защиты оборудования применяют устройства, реагирующие на составляющие нулевой последовательности.
    Схема и некоторые вопросы эксплуатации токовой направленной защиты нулевой последовательности. Принципиальная схема защиты показана на рис. 7.13. Пусковое токовое реле КА, включенное на фильтр токов нулевой последовательности, реагирует на появление КЗ на землю, когда в нулевом проводе проходит ток 3I0.
    Реле мощности KW фиксирует направление мощности КЗ, обеспечивая селективность действия: защита работает при направлении мощности КЗ от шин подстанции в защищаемую линию. Напряжение 3U0 подводится к реле мощности от обмотки разомкнутого треугольника трансформатора напряжения (шинки EV, H, KV, K).
    Реле времени КТ создает выдержку времени, необходимую по условию селективности.
    На рис. 7.14 показано размещение токовых направленных защит нулевой последовательности в сети, работающей с заземленными нейтралями с обеих сторон рассматриваемого участка. График характеристик выдержек времени построен по встречно-ступенчатому принципу. Из графика видно, что каждая защита отстраивается от защиты смежного участка ступенью времени Δt =t1-t3.
    Значение тока срабатывания пускового токового реле выбирается по условию надежного действия реле при КЗ в конце следующего (второго) участка сети, а также по условию отстройки от тока небаланса.
    Появление тока небаланса в реле связано с погрешностью трансформаторов тока, неидентичностью трансформаторов тока, неидентичностью их характеристик намагничивания и имеет решающее значение. Чтобы не допустить действия пускового токового реле от тока небаланса, ток срабатывания реле принимают больше тока небаланса. Ток небаланса определяется для нормального рабочего режима или для режима трехфазного КЗ в зависимости от выдержки времени защиты.
    При наличии в защищаемой сети автотрансформаторов, электрически связывающих сети двух напряжений, однофазное или двухфазное замыкание на землю к сети среднего напряжения приводит к появлению тока I0 в линиях высшего напряжения. Чтобы избежать ложных срабатываний защит линий высшего напряжения, уставки их защит по току срабатывания и выдержкам времени согласуют с уставками защит в сети среднего напряжения. По указанной причине избегают, как правило, заземления нейтралей обмоток звезд высшего и среднего напряжений у одного трансформатора. Заметим также, что у трансформатора со схемой соединения звезда-треугольник замыкание на землю на стороне треугольника не вызывает появления тока I0 на стороне звезды.
    Ток I0 появляется в линиях при неполнофазных режимах работы участков сетей. Такие режимы могут быть кратковременными и длительными. От кратковременных неполнофазных режимов, возникающих, например, в цикле ОАПВ линии, а также АПВ при неодновременном включении трех фаз выключателя защиты отстраиваются по току срабатывания или выдержки времени защит принимаются больше, чем время t ОАПВ. При возможных неполнофазных режимах работы линий (например, при пофазном ремонте под напряжением) токовые направленные защиты нулевой последовательности ремонтируемой линии и смежных участков должны проверяться и отстраиваться от несимметрии или выводиться из работы, так как они мало приспособлены для работы в таких условиях.
    В процессе эксплуатации токовых защит нулевой последовательности должны строго учитываться все заземленные нейтрали автотрансформаторов и трансформаторов, являющиеся как бы источниками токов нулевой последовательности. Распределение тока I0 в сети определяется исключительно расположением заземленных нейтралей, а не генераторов электростанций.
    Контроль исправности цепей напряжения разомкнутого треугольника осуществляется с помощью вольтметра, периодически подключаемого с помощью кнопки SB (см. рис. 7.12). Вольтметр измеряет напряжение небаланса, имеющего значение 1-3 В. При нарушении цепей показание вольтметра пропадает.
    Наряду с рассмотренной токовой направленной защитой нулевой последовательности широкое распространение в сетях 110 кВ и выше получили направленные отсечки и ступенчатые защиты пулевой последовательности. Наиболее совершенными являются четырехступенчатые защиты, первая ступень которых обычно выполняется без выдержки времени. Первая и вторая ступени защиты предназначены для действий при замыканиях на землю в пределах защищаемой линии и на шинах противоположной подстанции. Последние ступени выполняют в основном роль резервирования.
    5305
    Рис. 7.13. Схема токовой направленной защиты нулевой последовательности
    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-3.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > направленная токовая защита нулевой последовательности

  • 10 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 11 технология коммутации

    1. switching technology

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технология коммутации

  • 12 экономико-математические исследования в бывш. СССР и России

    1. economico-mathematical studies in the ex-USSR and russia

     

    экономико-математические исследования в бывш. СССР и России
    (исторический очерк) Э.-м.и. — направление научных исследований, которые ведутся на стыке экономики, математики и кибернетики и имеют основной целью повышение экономической эффективности общественного производства с помощью математического анализа экономических процессов и явлений и основанных на нем методов принятия оптимальных (шире — рациональных) плановых и иных управленческих решений. Они затрагивают также общую проблематику оптимального распределения ресурсов безотносительно к характеру социально-экономического строя. Развитие Э.-м.и. в бывш. СССР надо рассматривать как этап противоречивого процесса развития отечественной экономической науки и часть общего процесса развития мировой экономической науки, в настоящее время во многом практически математизированной. Первым достижением в развитии Э.-м.и. явилась разработка советскими учеными межотраслевого баланса производства и распределения продукции в народном хозяйстве страны за 1923/24 хозяйственный год. В основу методологии их исследования были положены модели воспроизводства К.Маркса, а также модели В.К.Дмитриева. Эта работа нашла международное признание и предвосхитила развитие американским экономистом русского происхождения В.В.Леонтьевым его прославленного метода «затраты-выпуск».. (Впоследствии, после длительного перерыва, вызванного тем, что Сталин потребовал прекратить межотраслевые исследования, они стали широко применяться и в нашей стране под названием метода межотраслевого баланса.) Примерно в это же время советский экономист Г.А.Фельдман представил в Комиссию по составлению первого пятилетнего плана доклад «К теории темпов народного дохода», в котором предложил ряд моделей анализа и планирования синтетических показателей развития экономики. Этим самым были заложены основы теории экономического роста. Другой выдающийся ученый Н.К.Кондратьев разработал теорию долговременных экономических циклов, нашедшую мировое признание. Однако в начале тридцатых годов Э.м.и. в СССР были практически свернуты, а Фельдман, Кондратьев и сотни других советских экономистов были репрессированы, погибли в застенках Гулага. Продолжались лишь единичные, разрозненные исследования. В одном из них, работе Л.В.Канторовича «Математические методы организации и планирования производства» (1939 г.) были впервые изложены принципы новой отрасли математики, которая позднее получила название линейного программирования, а если смотреть шире, то этим были заложены основы фундаментальной для экономики теории оптимального распределения ресурсов. Л.В.Канторович четко сформулировал понятие экономического оптимума и ввел в науку оптимальные, объективно обусловленные оценки — средство решения и анализа оптимизационных задач. Одновременно советский экономист В.В.Новожилов пришел к аналогичным выводам относительно распределения ресурсов. Он выработал понятие оптимального плана народного хозяйства, как такого плана, который требует для заданного объема продукции наименьшей суммы трудовых затрат, и ввел понятия, позволяющие находить этот минимум: в частности, понятие «дифференциальных затрат народного хозяйства по данному продукту», близкое по смыслу к оптимальным оценкам Л.В.Канторовича. Большой вклад в разработку экономико-математических методов внес академик В.С.Немчинов: он создал ряд новых моделей МОБ, в том числе модель экономического района; очень велики его заслуги в области организационного оформления и развития экономико-математического направления советской науки. Он основал первую в стране экономико-математическую лабораторию, впоследствии на ее базе и на базе нескольких других коллективов был создан Центральный экономико-математический институт АН СССР, ныне ЦЭМИ РАН (см.ниже).. В 1965 г. академикам Л.В.Канторовичу, В.С.Немчинову и проф. В.В.Новожилову за научную разработку метода линейного программирования и экономических моделей была присуждена Ленинская премия. В 1975 г. Л.В.Канторович был также удостоен Нобелевской премии по экономике. В 50 — 60-x гг. развернулась широкая работа по составлению отчетных, а затем и плановых МОБ народного хозяйства СССР и отдельных республик. За цикл исследований по разработке методов анализа и планирования межотраслевых связей и отраслевой структуры народного хозяйства, построению плановых и отчетных МОБ академику А.Н.Ефимову (руководитель работы), Э.Ф.Баранову, Л.Я.Берри, Э.Б.Ершову, Ф.Н.Клоцвогу, В.В.Коссову, Л.Е.Минцу, С.С.Шаталину, М.Р.Эйдельману в 1968 г. была присуждена Государственная премия СССР. Развитие Э.-м.и., накопление опыта решения экономико-математических задач, выработка новых теоретических положений и переосмысление многих старых положений экономической науки, вызванное ее соединением с математикой и кибернетикой, позволили в начале 60-х гг. академику Н.П.Федоренко выступить с идеей о необходимости теоретической разработки и поэтапной реализации единой системы оптимального функционирования социалистической экономики (СОФЭ). Стало ясно, что внедрение математических методов в экономические исследования должно приводить и приводит к совершенствованию всей системы экономических знаний, обеспечивает дальнейшую систематизацию, уточнение и развитие основных понятий и категорий науки, усиливает ее действенность, т.е. прежде всего ее влияние на рост эффективности народного хозяйства. С 60-х годов расширилось число научных учреждений, ведущих Э.-м.и., в частности, были созданы Центральный экономико-математический институт АН СССР, Институт экономики и организации промышленного производства СО АН СССР, развернулась подготовка кадров экономистов-математиков и специалистов по экономической кибернетике в МГУ, НГУ, МИНХ им. Плеханова и других вузах страны. Исследования охватили теоретическую разработку проблем оптимального функционирования экономики, системного анализа, а также такие прикладные области как отраслевое перспективное планирование, материально-техническое снабжение, создание математических методов и моделей для автоматизированных систем управления предприятиями и отраслями. На первых этапах возрождения Э.-м.и. в СССР усилия в области моделирования концентрировались на построении макромоделей, отражающих функционирование народного хозяйства страны в целом, а также ряда частных моделей и на развитии соответствующего математического аппарата. Такие попытки имели немалое методологическое значение и способствовали углублению понимания общих вопросов экономико-математического моделироdания (в том числе таких, как адекватность моделей, границы их познавательных возможностей и т.д.). Но скоро стала очевидна ограниченность такого подхода. Концепция СОФЭ стимулировала развитие иного подхода — системного моделирования экономических процессов, были расширены методологические поиски экономических рычагов воздействия на экономику: оптимального ценообразования, платы за использование природных и трудовых ресурсов и т.д. На этой основе начались параллельные разработки ряда систем моделей, из которых наиболее известны многоуровневая система среднесрочного прогнозирования (рук. Б.Н.Михалевский), система моделей для расчетов по определению общих пропорций развития народного хозяйства и согласованию отраслевых и территориальных разрезов плана — СМОТР (рук. Э.Ф.Баранов), система многоступенчатой оптимизации экономики (рук. В.Ф.Пугачев), межотраслевая межрайонная модель (рук. А.Г.Гранберг). Существенно углубилось понимание народнохозяйственного оптимума, роли и места экономических стимулов в его достижении. Наряду с распространенной ранее скалярной оптимизацией в исследованиях стала более активно применяться многокритериальная, лучше учитывающая многосложность условий и обстоятельств решения плановой задачи. Более того, стало меняться общее отношение к оптимизации как универсальному принципу: вместе с ней (но не вместо нее, как иногда можно прочитать) начали разрабатываться методы принятия рациональных (не обязательно оптимальных в строгом смысле этого слова) решений, теория компромисса и неантагонистических игр (Ю.Б.Гермейер) и другие методы, учитывающие не только технико-экономические, но и человеческие факторы: интересы участников процессов принятия и реализации решений. В начале 70-х гг. экономисты-математики провели широкие исследования в области применения программно-целевых методов в планировании и управлении народным хозяйством. Они приняли также активное участие в разработке методики регулярного (раз в пять лет) составления Комплексной программы научно-технического прогресса на очередное двадцатилетие. Впервые в работе такого масштаба при определении общих пропорций развития народного хозяйства на перспективу и решении некоторых частных задач был использован аппарат экономико-математических методов. Началось широкое внедрение программно-целевого метода в практику народнохозяйственного планирования. Были продолжены работы по созданию АСПР — автоматизированной системы плановых расчетов Госплана СССР и Госпланов союзных республик, и в 1977 г. введена в действие ее первая очередь, а в 1985 г. — вторая очередь. Выявились и немалые трудности непосредственного внедрения оптимизационных принципов в практику хозяйствования. В условиях, когда предприятия, объединения, отраслевые министерства были заинтересованы не столько в выявлении производственных резервов, сколько в их сокрытии, чтобы избежать получения напряженных плановых заданий, учитывающих эти резервы, оптимизация не могла найти повсеместную поддержку: ее смысл как раз в выявлении резервов. Поэтому работа по созданию АСУ не всегда давала должные результаты: усилия затрачивались на учет, анализ, расчеты по заработной плате, но не на оптимизацию, т.е. повышение эффективности производства (оптимизационные задачи в большинстве АСУ занимали лишь 2 — 3% общего объема решаемых задач). В результате эффективность производства не росла, а штаты управления увеличивались: создавались отделы АСУ, вычислительные центры. Эти обстоятельства способствовали некоторому спаду экономико-математических исследований к началу 80-х гг. Большой удар по экономико-математическому направлению был нанесен в 1983 г., когда бывший тогда секретарем ЦК КПСС К.У.Черненко обрушился с явно несправедливой и предвзятой критикой на ЦЭМИ АН СССР, после чего институт жестоко пострадал: подвергся реорганизации, был разделен надвое, потом еще раз надвое, из него ушел ряд ведущих ученых. Тем не менее, прошедшие годы ознаменовались серьезными научными и практическими достижениями экономико-математического крыла советской экономической науки. В ряде аспектов, прежде всего теоретических — оно заняло передовые позиции в мировой науке. Например, в области математической экономики и эконометрии (не говоря уже об открытиях Л.В.Канторовича) широко известны советские исследования процессов оптимального экономического роста (В.Л.Макаров, С.М.Мовшович, А.М.Рубинов и др.), ряд моделей экономического равновесия; сделанная еще в 1976 г. В.М.Полтеровичем попытка синтеза теории равновесия и теории экономического роста; работы отечественных ученых в области теории игр, теории группового (социального) выбора и многие другие. В каком-то смысле опережая время, экономисты-математики еще в 70-е гг. приступили к моделированию и изучению таких явлений, приобретших острую актуальность в период перестройки, как «самоусиление дефицита», экономика двух рынков — с фиксированными и гибкими ценами, функционирование экономики в условиях неравновесия. Активно развивается математический аппарат, в частности, такие его разделы, как линейное и нелинейное программирование (Е.Г.Гольштейн), дискретное программирование (А.А.Фридман), теория оптимального управления (Л.С.Понтрягин и его школа), методы прикладного математико-статистического анализа (С.А.Айвазян). За последние годы развернулось широкое использование имитационных методов, являющихся характерной чертой современного этапа развития экономико-математических методов. Хотя сама по себе идея машинной имитации зародилась существенно раньше, ее практическая реализация оказалась возможной именно теперь, когда появились электронные вычислительные машины новых поколений, обеспечивающие прямой диалог человека с машиной. Наконец, новым направлением прикладной работы, синтезирующим достижения в области экономико-математического моделирования и информатики, стала разработка и реализация концепции АРМ (автоматизированного рабочего места плановика и экономиста), а также концепции стендового экспериментирования над экономическими системами (В.Л.Макаров). Начинается (во всяком случае должна начинаться) переориентация Э.-м.и. на изучение путей формирования и эффективного функционирования рынка (особенно переходного процесса — это самостоятельная тема). Тут может быть использован богатый арсенал экономико-математических методов, накопленный не только в нашей стране, но и в странах с развитой рыночной экономикой.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > экономико-математические исследования в бывш. СССР и России

  • 13 подростковый анализ

    Психоаналитическое лечение, инициирующее нормальный и корректирующее неправильный процесс развития в подростковом возрасте. Его цель — добиться специфической для подросткового возраста реструктуризации психики. Работа с состояниями распада и консолидации структуры строится через создание конфликтов, противодействующих проявлениям инфантильности, а разрешаемый конфликт относится к разным фазам подросткового возраста. Адаптация личности подростка к пубертату во многом связана с культурными и социальными условиями. В этом контексте и оперирует психоанализ.
    Общий характер подросткового анализа определяется тем, что в пубертате относительно слабое Я подростка сталкивается с усилившимися влечениями. Поэтому терапия сочетает поддержку Я с анализом типичных для этого возраста защит (см. подростковый возраст). Аналитик должен четко различать нормальные и патологические проявления подростковой регрессии и уметь анализировать ее компонент отыгрывания (защиту от пассивности), особенно при переносе. Перенос вводит в анализ фиксации на влечении и объекте. Это способствует процессу индивидуации в подростковом возрасте. Время от времени подросток испытывает потребность воспринимать аналитика в качестве "реального объекта"; благодаря этому происходит изменение Сверх-Я и формируется взрослый Я-идеал.
    Патологические остатки диадической (доэдиповой) стадии являются важными детерминантами неврозов подросткового возраста и нарушений развития; следовательно, эти ранние детерминанты должны быть подвергнуты при анализе интерпретации наряду с проявлениями триадической (эдиповой) фазы. Такой подход позволил модифицировать классическую теорию рекапитуляции и показать, что диадические полярности и триадические конфликты не только повторяются в подростковом возрасте, но и разрешаются (Blos, 1979). Диадические однополые привязанности сохраняются до поздней стадии подросткового возраста, то есть отказ от протоадолесцентной бисексуальности происходит позже. Гомосексуальные тревоги и склонности, всегда проявляющиеся в подростковом анализе, анализируются как остатки диадических однополых фиксаций и их эдиповых последствий. Подростковый анализ пронизывает задача деидеализации Самости и объекта. Этот процесс приводит к отказу от детского нарциссизма или его трансформации и усиливает способность к проверке реальности. Он также делает необходимой в подростковом анализе работу печали (о которой сигнализирует депрессивное настроение) как предпосылки продвижения к взрослости.
    Особенности различных стадий подросткового возраста наряду с внешними влияниями определяют характер аналитического подхода. В предподростковом возрасте (примерно в возрасте от одиннадцати до тринадцати лет) возросшая гормональная (преимущественно адреналовая) стимуляция усиливает влияние со стороны влечений. Отделение от родительских объектов сопровождается формированием групп, состоящих из сверстников подростка, и изменениями функционирования Сверх-Я. Даже небольшие телесные изменения вызывают тревогу и регрессивную защиту. Типичны негативизм и анальный уровень организации Самости и объектов. Исчезают податливость и уступчивость, характерные для латентного периода детства. Вербальная коммуникация при лечении является ограниченной, однако более зрелая игровая деятельность помогает сохранять рабочие отношения с аналитиком. Конфликты со сверстниками и возникающие интеллектуальные торможения помогают преодолевать сопротивление терапии. С другой стороны, подросток воспринимает сам по себе анализ как нарциссическую травму. Благодаря интерпретации и эмпатическому приятию аналитик помогает ему разрешить конфликты, вызванные ранними объектными отношениями. В результате тревога и скованность пациента уменьшаются, что облегчает социальное и интеллектуальное функционирование. Однако этот прогресс нередко ведет к тому, что аналитик, равно как и родители, обесценивается, а анализ прекращается.
    Ранний подростковый возраст (примерно от тринадцати до семнадцати лет) характеризуется быстрым ростом и лавинообразной гормональной активностью; к концу этой стадии обычно достигается физиологическая и половая зрелость. Образ тела существенно нарушается, что приводит к искажениям Я, сопровождающимся многочисленными и разнообразными соматическими тревогами. Поддержка, оказываемая системой Сверх-Я функциям Я, и контроль над влечениями ослабевает вследствие декатексиса родительских образцов и ценностей. Занятие мастурбацией помогает восстановить чувство Самости, тогда как протест и неповиновение служат рязрядке энергии инстинктивных влечений и способствуют формированию идентичности при отделении от родителей. Автономные функции Я (чувство времени, причинно-следственное мышление и т.д.) в результате инстинктуализации ослабевают. Очень выраженными могут быть социальный уход, отсутствие интереса к школе, депрессия и аффективные вспышки (особенно чувства стыда и гнева). Проведение анализа в классическом виде является затруднительным, поскольку подростки склонны к экстернализации конфликтов, отыгрыванию, паранойяльным проявлениям и поиску магических решений. Требования школы и семьи, часто воспринимаемые как критические, также ограничивают время для аналитической работы. Хотя пациент способен многое вербализировать, свободное ассоциирование затрудняется проявлениями кризиса. Аналитик должен сохранять объективное дружелюбие и порой выступать в качестве "дополнительного Я", особенно по отношению к таким функциям Я, как причинно-следственное мышление и проверка реальности. Анаклитические аспекты переноса во многом помогают проведению анализа.
    В среднем подростковом возрасте (примерно от семнадцати до девятнадцати лет) физические изменения менее выражены, становится более верным образ тела, начинают проявляться более прочные репрезентации Самости и чувство идентичности. Поверхностный катексис компромиссных объектов, окрашенных в эдиповы тона, ведет к возникновению интенсивных, но зачастую кратковременных сексуальных отношений. Интегративные и адаптивные функции Я связывают и организуют влечения, что ведет к сублимации и вовлечению объектов в более зрелую структуру характера. Отыгрывание сходит на нет и улучшается контроль над побуждениями, что позволяет проводить анализ, по форме и техникам не отличающийся от анализа взрослых, за исключением того, что аналитик иногда оказывает поддержку в качестве вспомогательного Я.
    В позднем подростковом возрасте (примерно от девятнадцати до двадцати двух лет) психический аппарат является относительно стабильным. Цели и объектные отношения в целом соответствуют способностям и возможностям индивида. Прочные чувства Самости и идентичности помогают ему осуществить во внешней реальности выбор карьеры и объектов, сделанный в субъективной реальности. Симптоматика и критерии доступности анализу, в сущности, являются такими же, что и при анализе взрослых, а аналитическая техника требует лишь небольших изменений.
    \
    Лит.: [100, 101, 103, 193, 228, 400, 846]

    Словарь психоаналитических терминов и понятий > подростковый анализ

  • 14 neben /D/A/

    neben (D/A)
    • (D/A) около, рядом:
    Er sitzt neben ihr. Он сидит рядом с ней. - Er setzt sich neben sie. Он садится рядом с ней.
    • (D) наряду с чем-либо, кроме:
    Neben der Politik interessiert ihn auch Archäologie. - Наряду с политикой, его интересует и археология.
    Neben seiner beruflichen Arbeit hat er noch viele gesellschaftliche Verpflichtungen. - Кроме своей работы, у него ещё много общественных нагрузок.

    Грамматика немецкого языка по новым правилам орфографии и пунктуации > neben /D/A/

  • 15 neben

    neben (D/A)
    • (D/A) около, рядом:
    Er sitzt neben ihr. Он сидит рядом с ней. - Er setzt sich neben sie. Он садится рядом с ней.
    • (D) наряду с чем-либо, кроме:
    Neben der Politik interessiert ihn auch Archäologie. - Наряду с политикой, его интересует и археология.
    Neben seiner beruflichen Arbeit hat er noch viele gesellschaftliche Verpflichtungen. - Кроме своей работы, у него ещё много общественных нагрузок.

    Грамматика немецкого языка по новым правилам орфографии и пунктуации > neben

  • 16 эколого-экономическое моделирование

    1. ecologico-economic modelling

     

    эколого-экономическое моделирование
    Описание экономических и экологических процессов в их взаимосвязи в виде эколого-экономических моделей, основной исследовательский метод новой экономической дисциплины, которую можно было бы назвать экологической экономикой, но чаще (особенно в вузовских программах) определяют как экономику природопользования. Непосредственной причиной возникновения данной области исследований явились тревожащие человечество процессы изменений в окружающей среде, связанные с происходящей в мире научно-технической революцией, и соответственно потребность в целенаправленных действиях по сдерживанию этих процессов как в глобальном масштабе, так и в локальных рамках отдельных экономических объектов. Разработка показателей, характеризующих качество окружающей среды, прогнозирование возможных изменений среды в результате принятия тех или иных (главным образом хозяйственных) решений, прогнозирование обратного влияния экологических факторов на производство и экономические процессы в целом, планирование мероприятий по охране окружающей среды (например, строительство очистных сооружений, создание безотходных технологий) — таковы основные сферы применения Э.-э.м. Причем следует отметить, что главным принципом здесь должен быть принцип оптимизации: во всех случаях использование ресурсов природы, улучшение тех или иных объектов окружающей среды (например, устранение загрязнений воды или воздуха) должны приносить максимум (общественной) полезности при минимуме затрат на соответствующую деятельность. В частном случае критерием оптимальности может выступать сопоставление затрат на улучшение природы, уничтожение загрязнителей и т.п. с полученным экономическим эффектом. Степень «участия» экологических и экономических факторов в эколого-экономической модели может быть различной. В одних случаях в «чисто» экономической модели, например, наряду с выпуском продукции учитывается и выпуск «побочной» продукции — отходов как загрязнителей среды. В других случаях моделируются взаимосвязи экологических факторов, однако результаты расчетов используются в тех или иных прогнозных или плановых производственных задачах. Такова, например, модель природной экосистемы, содержащая уравнения баланса живого органического вещества (биомассы). Рядом исследователей делаются попытки построения комплексов и систем эколого-экономических моделей в целях планирования и управления состоянием окружающей среды. Практическое применение (для прогнозирования воздействий структуры экономики на окружающую среду) в ряде стран приобретают расширенные модели межотраслевого баланса, включающие наряду с производственными отраслями также «отрасли», уничтожающие вредные отходы. Решающую роль в развитии этого направления сыграли работы В.В.Леонтьева, который утверждал, что «…загрязнение и другие нежелательные (или желательные) внешние эффекты производственной деятельности с чисто практической точки зрения следует рассматривать как часть экономической системы»[1].На­конец, существует еще более широкий подход к эколого-экономическому балансу, исходящий из законов термодинамики: количество вещества, взятого из природы для производства благ, сравнивается с ко­личеством отходов жизнедеятельности человека в целом (materials balance principle). См. Вэйст-индекс, Дифференциальные экологические затраты, Глобальные модели.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > эколого-экономическое моделирование

  • 17 карты расхода материалов

    Подробно регистрируют последовательность операций, перевозок, проверок, задержек и хранений, которые происходят с материалом в процессе работы. — These charts present a detailed record of the sequence of operations, transportations, inspections, delays and storages, which occur to the material during a work process.

    Графический метод регистрации последовательности операций в процессе работы наряду с любой другой информацией, необходимой для анализа. — A graphical method of recording the sequence of activities which occur during a work process, along with any other information necessary for analysis.

    карты технологического процесса, общие — outline process charts

    Регистрируют только основные части технологического процесса (т.е. операции и проверки). — These charts record the main parts of a process only (i.e. operations and inspections).

    Russian-English Dictionary "Microeconomics" > карты расхода материалов

  • 18 инвертор источника бесперебойного питания

    1. inverter

     

    инвертор источника бесперебойного питания
    Часть схемы ИБП, которая служит для преобразования постоянного напряжения батареи в переменное напряжение на выходе источника. В ИБП класса Off-line инвертор работает только в автономном режиме ИБП и формирует ступенчатую аппроксимацию синусоиды. В ИБП класса Оn-line инвертор вырабатывает на выходе практически идеальную синусоиду и работает в любом режиме (кроме режима байпас), получая на свой вход в автономном режиме питание от аккумуляторов, а в нормальном режиме — от входной сети после выпрямления и стабилизации входного переменного напряжения
    [ http://www.radistr.ru/misc/document423.phtml]

    EN

    inverter
    Functional UPS module that inverts the DC battery voltage to 50Hz or 60Hz AC voltage.
    [ http://www.upsonnet.com/UPS-Glossary/]


    В состав ИБП всех типов наряду с аккумулятором входит инвертор, который представляет собой полупровод­никовый преобразователь постоянного напряжения в переменное напряжение 220 В. В зависимости от исполнения инвертор формирует переменное выходное напряжение различной формы. Простые схемы инверторов формируют напряжение прямоугольной формы. Некоторые схемы инверторов формируют напряжение, близкое к синусоидальной форме - аппроксимированное ступенями.
    Инверторы, вырабатывающие несинусоидальное выходное напряжение, применяются в основном в недорогих off-line ИБП малой мощности и пригодны для работы с нагрузками, имеющими импульсные бло­ки питания, например, блоки питания компьютерных системных блоков.

    Инверторы, используемые в ИБП типов line-interactive и on-line, формируют напряжение сину­соидальной формы с низким содержанием гармоник, что позволяет использовать эти ИБП для питания нагрузок всех типов.


    Форма выходного напряжения инверторов:
    а) - ступенчатая; б) - аппроксимированная синусоида; в) синусоидальная

    [ http://www.tcs.ru/reviews/?id=345 с изменениями]


    В зависимости от используемого принципа преобразования различают три основных типа:
    - инверторы, генерирующие напряжение прямоугольной формы,
    - инверторы с пошаговой аппроксимацией
    - инверторы с широтноимпульсной модуляцией (ШИМ).

    Последние обеспечивают наиболее близкую к гармонической форму выходного напряжения. Кроме того, манипулируя скважностью импульсов ШИМ-сигнала, «интеллектуальные» инверторы, применяемые в сериях Pro&Vision, PowerVision и Safe&Power Evo компании N&Power, автоматически корректируют форму выходного напряжения при работе с нелинейной нагрузкой.
    Основными показателями эффективности работы инвертора являются:
    • перегрузочная способность.
    • коэффициент полезного действия (КПД).
    • допустимый крест-фактор нагрузки.
    • допустимый коэффициент мощности нагрузки.
    • качество выходного напряжения

    [ http://www.condipro.ru/_library/_refs/guide/terms.pdf]


    В мощных трехфаз­ных ИБП инвертор вы­полнен по трехфазной мосто­вой схеме. Для по­строения синусоиды в инвер­торе реализован принцип широтно-импульсной модуля­ции (ШИМ).
     

    0427
    Мостовая схеме инвертора

    Принцип его действия состоит в подаче импульсов переменной скважности че­рез тиристоры на трансформатор, выполняющий одновременно роль фильтра, или непосредственно на LC-фильтр на выходе инвертора (на схеме не показан). В результате формируется синусоидальное напряжение с низким коэф­фициентом гармонических искажений: КU< 3%.

    0428

    Принцип широтно-импульсной модуляции

    [ http://electromaster.ru/modules/myarticles/article.php?storyid=365]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > инвертор источника бесперебойного питания

  • 19 неисправность

    1. trouble
    2. shutdown
    3. problem
    4. malfunction
    5. layup
    6. health problem
    7. fouling
    8. faultiness
    9. fault
    10. failure occurrence
    11. failure
    12. fail
    13. disturbance
    14. disrepair
    15. disease
    16. defect
    17. bug
    18. breaking
    19. breakdown
    20. breakage
    21. abortion
    22. abort
    23. abnormality

     

    неисправность
    отказ в работе

    Состояние машины, характеризующееся неспособностью выполнять заданную функцию, исключая случаи проведения профилактического технического обслуживания, других запланированных действий или недостаток внешних ресурсов (например, отключение энергоснабжения).
    Примечание 1
    Неисправность часто является результатом повреждения самой машины, однако она может иметь место и без повреждения.
    Примечание 2
    На практике термины «неисправность», «отказ» и «повреждение» часто используются как синонимы.
    [ ГОСТ Р ИСО 12100-1:2007]

    неисправность

    Состояние оборудования, характеризуемое его неспособностью выполнять требуемую функцию, исключая профилактическое обслуживание или другие планово-предупредительные действия, а также исключая неспособность выполнять требуемую функцию из-за недостатка внешних ресурсов.
    Примечание - Неисправность часто является следствием отказа самого оборудования, но может существовать и без предварительного отказа.
    [ГОСТ ЕН 1070-2003]

    неисправность
    Состояние технического объекта (элемента), характеризуемое его неспособностью выполнять требуемую функцию, исключая периоды профилактического технического обслуживания или другие планово-предупредительные действия, или в результате недостатка внешних ресурсов.
    Примечания
    1 Неисправность является часто следствием отказа самого технического объекта, но может существовать и без предварительного отказа.
    2 Английский термин «fault» и его определение идентичны данному в МЭК 60050-191 (МЭС 191-05-01) [1]. В машиностроении чаще применяют французский термин «defaut» или немецкий термин «Fehler», чем термины «panne» и «Fehlzusstand», которые употребляют с этим определением.
    [ ГОСТ Р ИСО 13849-1-2003]

    Тематики

    EN

    DE

    FR

    3.16 неисправность (fault): Состояние объекта, характеризующееся неспособностью исполнять требуемую функцию, исключая время профилактического технического обслуживания или других запланированных действий, или простои из-за недостатка внешних ресурсов

    Примечание - Неисправность часто является результатом отказа объекта, но может существовать и без отказа.

    Источник: ГОСТ Р 51901.6-2005: Менеджмент риска. Программа повышения надежности оригинал документа

    3.6 неисправность (fault): Состояние элемента, характеризующееся неспособностью исполнять требуемую функцию, исключая период технического обслуживания, ремонта или других запланированных действий, а также из-за недостатка внешних ресурсов.

    Примечание - Неисправность часто является результатом отказа элемента, но может существовать и без предшествующего отказа.

    Источник: ГОСТ Р 51901.5-2005: Менеджмент риска. Руководство по применению методов анализа надежности оригинал документа

    3.5 неисправность (fault): Состояние объекта, когда один из его элементов или группа элементов проявляют признаки деградации или нарушения работы, что может привести к отказу машины.

    Примечания

    1 Неисправность часто является следствием отказа, но может иметь место и при его отсутствии.

    2 Состояние объекта не рассматривают как неисправное, если оно возникло вследствие запланированных процедур или нехватки внешних ресурсов.

    Источник: ГОСТ Р ИСО 13379-2009: Контроль состояния и диагностика машин. Руководство по интерпретации данных и методам диагностирования оригинал документа

    3.2 неисправность (malfunction): Неспособность оборудования, систем защиты и компонентов выполнять заданные функции.

    Примечания

    1 См. также ГОСТ Р ИСО 12100-1.

    2 В контексте настоящего стандарта неисправность может произойти по целому ряду причин, включая:

    a) изменение характеристик материалов или размеров деталей;

    b) отказ одной (или более) составной части оборудования, систем защиты и компонентов;

    c) воздействие внешних факторов (например, ударов, вибрации, электромагнитных полей);

    d) погрешности или недостатки при разработке (например, ошибки программного обеспечения);

    e) помехи от сети питания или иных коммуникаций;

    f) потерю управления оператором (особенно в случае применения ручных и передвижных машин).

    Источник: ГОСТ Р ЕН 1127-1-2009: Взрывоопасные среды. Взрывозащита и предотвращение взрыва. Часть 1. Основополагающая концепция и методология

    3.27 неисправность (malfunction): Неспособность оборудования, систем защиты и компонентов выполнять заданные функции (см. также ГОСТ Р ИСО 12100-1).

    Примечание 1 - В контексте настоящего стандарта неисправность может произойти по целому ряду причин, включая:

    - изменение характеристик материалов или размеров деталей;

    - отказ одной (или более) составной части оборудования, систем защиты и компонентов;

    - воздействие внешних факторов (например ударов, вибрации, электромагнитных полей);

    - погрешности или недостатки при разработке (например ошибки программного обеспечения);

    - помехи от сети питания или иных коммуникаций;

    - потерю управления оператором (особенно в случае применения ручных и передвижных машин).

    Источник: ГОСТ Р ЕН 1127-2-2009: Взрывоопасные среды. Взрывозащита и предотвращение взрыва. Часть 2. Основополагающая концепция и методология (для подземных выработок)

    3.4 неисправность (malfunction): Неспособность оборудования, защитных систем и компонентов выполнять заданные функции.

    Примечание - В контексте настоящего стандарта это может произойти по целому ряду причин, включая:

    - изменение характеристик материалов или размеров деталей;

    - отказ одной (или более) составной части оборудования, систем защиты и компонентов;

    - воздействие внешних факторов (например ударов, вибрации, электромагнитных полей);

    - погрешности или недостатки при разработке (например ошибки программного обеспечения);

    - помехи от сети питания или иных коммуникаций;

    - потерю управления оператором (особенно в случае применения ручных и передвижных машин).

    Источник: ГОСТ Р ЕН 13463-1-2009: Оборудование неэлектрическое, предназначенное для применения в потенциально взрывоопасных средах. Часть 1. Общие требования

    3.9 неисправность (breaking): Вращение мешалки с большой скоростью или рывками, которое происходит вследствие расплавления пробы угля и образования сплошной массы вокруг вала мешалки и лопастей. Это делает определение истинного значения текучести невозможным.

    Источник: ГОСТ Р 54247-2010: Уголь каменный. Определение пластических свойств на пластометре Гизелера оригинал документа

    3.3 неисправность (fault): Состояние объекта, при котором он не способен выполнять требуемую функцию, за исключением такой неспособности при техническом обслуживании или других плановых мероприятиях или вследствие нехватки внешних ресурсов.

    Примечания

    1 Неисправность часто является следствием отказа объекта, но может иметь место и без него.

    2 В настоящем стандарте термин «неисправность» используется наряду с термином «отказ» по историческим причинам.

    Источник: ГОСТ Р 51901.12-2007: Менеджмент риска. Метод анализа видов и последствий отказов оригинал документа

    3.2 неисправность (fault): Состояние объекта, когда один из его элементов или группа элементов проявляет признаки деградации или нарушения работы, что может привести к отказу машины.

    Примечание - Неисправность может привести к отказу.

    Источник: ГОСТ Р ИСО 17359-2009: Контроль состояния и диагностика машин. Общее руководство по организации контроля состояния и диагностирования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > неисправность

  • 20 Андреа дель Сарто

    (1486-1530; итал. живописец; наряду с Фра Бартоломео один из выдающихся мастеров флорентийской школы Высокого Возрождения; монументальные, величественные алтарные картины; фрески его работы находятся в монастыре Скальци ( the Scalzo)) Andrea del Sarto

    Русско-английский словарь религиозной лексики > Андреа дель Сарто

См. также в других словарях:

  • Бетонные работы —         работы при возведении монолитных бетонных и железобетонных конструкций и сооружений из цементного бетона. (Б. р. при производстве сборного железобетона см. в ст. Железобетонные конструкции и изделия). Б. р. включают следующие основные… …   Большая советская энциклопедия

  • Регламент работы ремонтных бригад на шахтах — Работа на шахте имени Карла Маркса в городе Енакиево Донецкой области, где в ночь на воскресенье произошел взрыв, была приостановлена за несколько дней до аварии в связи с выявленными нарушениями. На многих шахтах по составу выполняемых работ в… …   Энциклопедия ньюсмейкеров

  • Земляные работы —         комплекс строительных работ, включающий выемку (разработку) грунта, перемещение его и укладку в определённое место (процесс укладки в ряде случаев сопровождается разравниванием и уплотнением грунта). З. р. являются одним из важнейших… …   Большая советская энциклопедия

  • Каторга каторжные работы — подневольный труд, отбываемый в пользу государства самыми тяжкими преступниками. История К. начинается с конца XVII ст. и тесно связана с историей ссылки как карательной меры. Еще до издания уложения Алексея Михайловича заметно стремление… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Каторга, каторжные работы — подневольный труд, отбываемый в пользу государства самыми тяжкими преступниками. История К. начинается с конца XVII ст. и тесно связана с историей ссылки как карательной меры. Еще до издания уложения Алексея Михайловича заметно стремление… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Каторжные работы — Каторга, каторжные работы (от греч. κατεργων катергон, большое гребное судно с тройным рядом вёсел; позднее такое судно стали называть галерой)  подневольный труд, отбываемый в пользу государства самыми тяжкими с точки зрения государства… …   Википедия

  • Проблемы работы — Проблемы работы. Саентология для рабочих будней Problems of Work. Scientology Applied to the Work a Day World …   Википедия

  • МИНИМИЗАЦИЯ ВЫЧИСЛИТЕЛЬНОЙ РАБОТЫ — раздел современной вычислительной математики, посвященный конструированию и исследованию методов, позволяющих находить приближенное с заранее указываемой точностью решение поставленной задачи Риз класса {Р}при наименьших затратах вычислительной… …   Математическая энциклопедия

  • Геологоразведочные работы —         (a. geologic prospecting works; н. geologische Erkundung; ф. travaux de prospection geologique; и. trabajos de prospeccion geologica) комплекс разл. специальных геол. и др. работ, к рые производятся для обнаружения и подготовки к пром.… …   Геологическая энциклопедия

  • Вольные работы в войсках — В 1723 г. состоялось первое повеление Петра Великого, которым унтер офицерам и рядовым разрешалось наниматься на работы в местах квартирования. Этим разрешением стали часто злоупотреблять, так что несколько раз приходилось подтверждать, чтобы… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • История развития социальной работы — – развитие социальной работы как профессиональной области скорее схоже с развитием медицины, чем психологии, в том смысле, что динамика развития была не «от теории к практике», а от практикования к попыткам объяснить полученные эффекты. Если как… …   Словарь-справочник по социальной работе

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»